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I. MATHEMATICAL INTRODUCTION

In order to discuss concisely the progress of research during this

reporting period, the basic formulation of the MFE method in 2-0 is

presented immediately below.

Consider a general system of PDE's, U = L(U), or

Ul = LI(U)

uN = LN(U) (1)

Using piecewise linear approximants of Uk = j akj(t) . ckJ(x, y)

on a hexagonally connected triangular mesh (see Figure 1), application of

the chain rule to the differentiation of uk gives

u k x ak.k0 + k.L k + j.-kj ,where (2)

= uk , k a auktx j , jj --- ' ykJ  .. (3)
(ak. 'I k xj )yj

The functions akj , k i, and ,kj are basis functions at each node, j,
corresponding to the effect on the piecewise linear functions uk by the N

+ 2 parameters akj, xj, and yj. It can be shown readily by taking

tiny increments in akj, or xj, or yj that all three basis functions

(t, i, and Y are piecewise linear functions having their support in the

hexagon of six triangles surrounding the jth node. It turns out that

,10 is independent of k; it is continuous and takes on the value I at the

center of the hexagon and 0 at the other nodes. The functions 0k and Yk

are discontinuous at the center and on the inner edges of the hexagon; they

vanish identically on the outer edges of the hexagon.

Ordinary differential equations (ODE's) are derived for the parameters

of the MFE method by requiring that the parameter derivatives (alj, ...aN., xj, yjI

are evaluated at each instant so as to formally minimize the L2 norm of

the POE residuals, U - L(U), plus regularization terms. The variational

equations for this minimization yield the following system of ODE's:
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FIGURE I-A. EXACT SOLUTION SURFACE, WITH LINES OF

CONSTANT'X AND CONSTANT Y,

FIGURE 1-B. APPROXIMATE SCOLUTION REPRESENTED BY
PIECEWISE 'LINEAR FUNCTIONS MAKING UP

HEXAGONALLY CONNECTED TRIANGULAR FACETS.

TIE UNKNOWNS ARE lalJp, ... x j, yj
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(1j i) kj + (.k', + (-ykj ,  (Lk(U), i) for k = 1, ... N, (4a)

N . lk
: : , vski + (((kX , 'k )x. + (-ykj , ,ikl

k=l j
NN (Lk(U), okl ) + (regularization terms) (4b)

k=1
N • •S (u j , ykl)akj + (k j , yk')x. + (yk j , yki

k=1 j

N
E (Lk(U), yk ) + (regularization terms) (4c)

k=l

The sums on j in Eqns. (4) run over the seven neighboring nodes of

i (including the ith node itself)in the hexagonal grid. Equations (4) thus

provide the basic working equations of the MFE method in 2-D. This system

of ODE's is written for purposes of numerical solution in the form

C(y)y- g(y) = 0, (5)

where y(t) = (all, ... xl, Yl; a12, . ., x2 , Y2; ........ ) is

the vector of unknown parameters, and the "mass matrix" C(y) is symmetric

and positive definite. This system of ODE's can be extremely stiff, and

such stiff ODE solvers as the Gear method and an implicit Runge-Kutta method

are used for the numerical solutions of Equations (4) and (5).

Obviously, the evaluation of the numerous inner product terms in Eqns.

(4) is tedious, and the overall organization of an efficient code structure

for the general solution of Eqns. (4) and (5) in 2-D is quite exacting.

These are the major tasks which have been performed during this reporting

period and which will be sumnarized and discussed further below.
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RESEARCH PROGRESS

The overall ob "tive of this research is to explore the promise of the

continuous node moving properties in 2-D of the MFE method (a new numerical

POE solution method) for the effective solution of problems with extremely

large, but finite, gradients. Such problems arise in numerous scientific

and engineering applications which dre of interest to the U.S. Air Force.

Accordingly, this research necessarily involves both fundanental analysis of

the numnerical method, itself, and reduction to practice of the MFE method

in order to carry out the essential scientific testing and advancement of

the basic method in higher dimensions.

Problems which can be written in conservation form as

ut - -cl.f x - c2.gy + c3.(uxx + Uyy) (6)

are being investigated in the current stages of research. The immediate

objective of this first year's research is to develop a working MFE code in

2-D which can solve such simple equations as the heat equation, a single

travelling wave, and Burger's equations, in order to study at an early date

the basic node moving properties of the MFE method in 2-D. (All of these

simple equations are obtained by appropriate choices of coefficients cl,

c2 , and c3 and functions fx and gy in Eqn. (6).) The first working

code version is nearly operational at this time. Table I presents a brief

summary of the status of essential tasks conducted in this research.

DISCUSSION ANU AIJLITIONAL INFORMATION

The work during this reporting period has been heavily devoted to code

development and analysis of the logical structure of the MFE method in two

dimensions. As a result of these efforts, significant computational

econoiies have been realized fur both unvectorized versions of the method

as it currently exists and, more importantly, for vectorized versions which

will undoubtedly emerge in later efforts.
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TABLE 1 - SUMMARY OF PROGRESS

Basis Functions

MILESTONE: Using piecewise linear STATUS: Completed. Some operators
basis functions, develop inner in gas dynamics equations have also
products of the operators in Eqn. been evaluated, coded, and tested.
(6) by numerical integration. Both simple and composite Simpson's

(Newton-Cotes) methods are used on
triangle edge (line) integrations.
Both simple and composite midpoint
rules are used for integrations on
triangle areas.

Regularization

MILESTONE: Develop penalty functions STATUS: Completed.
which prevent grid mesh tangling for
the MFE nodes.

Grid Mesh Generation

MILESTONE: Assess automatic grid STATUS: Scoping completed.
mesh generators for compatibility
with the data structures in the
MFE method.

Matrix Solution

MILESTONES:
(a) Apply existing direct factori- STATUS: Completed.

zation methods.
(b) L-U decomposition of banded STATUS: Completed.

matrix.
(c) Point and line relaxation methods. STATUS: Completed.
(d) Alternating Direction Implicit STATUS: Two-directional ADI

(ADI). completed. Dynamic ADI in three
directions warrants additional
research, as do efficient iterative
matrix solution methods.

Boundary Conditions

MILESTONES:
(a) Stationary Dirichlet and zero- STATUS: Completed.

Neumann conditions.
(b) Time-dependent Dirichlet STATUS: Completed.

conditions.
(c) Non-zero Neumann and mixed STATUS: Barely started.

boundary conditions.
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The nature of these economies are illustrated, for exanple, by the

structure of equations (4) above which are written on a node-by-node basis

(via the sumnations over j on nodes). Although compact for purposes of

theoretical derivations and expositions, this node-by-node ordering of

operations turns out not to provide the most efficient architecture for MFE

computations of those PDE operators which appear in Eqn. (6). Alternatively,

the structure of the MFE method and the topology of hexagonally connected

triangular basis functions lend themselves to both logical and practical

computational economies when the method is executed on a triangle-by-

triangle basis. This alternative course is the one which is being

implemented in the present work.

In scoping studies of grid mesh generation methods, it has become

evident that hexagonally connected triangular mesh generation methods are

basically compatible with the MFE method. The logical structure and mode of

PUE solution execution by the MFE method again contributes to this conclu-

sion. So long as the ME method continues to exhibit robustness in its

continuous node movement properties, the use of grid mesh generation

routines would be required only for problem initializations. All solution

regridding subsequent to initialization is continuously performed, in

effect, by the MFE method itself based upon its own stringent minimization

criteria. It is, in fact, preferable to not introduce a generically

different mesh generation method on an in-line basis into the transient MFE

solutions. This anticipated restriction to problem initializations reduces

greatly the role and the demands upon other mesh generation methods which

would be used in conjunction with the MFE method. In those problems which

may require some infrequent remapping of MFE solutions in order to reach

final solutions, one would undoubtedly choose to interrupt tile MFE solution,

regrid the numerical PDE solution data at that stage, and then proceed again

with the MFE solution as a new initial-value problem. For this type of

procedure, the MFE method would be viewed as the dynamic mesh generation

procedure and the alternative mesh generation method would be viewed as the

static initialization procedure. IL thus appears that if any revisions at

all are required, it would be only minor alterations of mesh incexing and

of triangle orientations which may be needed in some of the available

triangular mesh generation packages in order to serve effectively as an

initialization method for MFE solutions. Further work in this area of mesh

generation for initialization will be taken up again in later stages of

research when more complex applications are considered.
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Matrix solution methods for the large, banded, stiff syston of MFL

equations have been tested extensively during this reporting period. The

results of this testing indicate that L - U decomposition of the banded

matrix of the MFE method is a reasonable choice for this early stage of

research where immediacy, reliability, and ease of implementation outweigh

computational efficiency in small test problem applications. (In later

stages of research it will be necessary to implement more efficient matrix

solution methods for larger and/or more complex PDE systems, as will be

indicated in the discussion below.) Point and line relaxation methods have

also been tested during this reporting period and found to converge too

slowly to be useful in current MFE research. Two-directional AVI methods

were similarly tested and were found to be well-suited for implementation

with the MFE method on a quadrilateral grid. For the hexagonally connected

triangular mesh which is used in the present effort, three-directional (in

contrast to two-directional) ADl methods will be required. Although a large

amount of additional research is needed before three-directional ADI can be

used effectively with the MFE method, dynamic ADI methods are sufficiently

promising that such further research certainly appears to be warranted for

large-scale MFE applications in the future. Indeed, dynamic ADI and perhaps

other splitting methods presently appear to be mandatory in order to achieve

desired economies when large-scale applications are considered. In antici-

pation of these later matrix solution needs, the investigation of more

efficient interative solution methods has also been started. At this time,

partial block Gauss elimination and incomiplete orthogonalization of a

conjugate gradient solution method are in the early scoping stages and are

showing some signs of promise.

No major deviations from the planned course of research have been made

during this reporting period and none are anticipated during the next

reporting period. %o far as maintaining an alert for potential problems

which may arise, the adequacy of numerical Jacobians is under constant

surveillance. Testing during the present period indicates that essential

levels of computational accuracy in Jacobian evaluations are likely to be

maintained by the numerical discretization methods which are used in current

code versions. Constant monitoring of this portion of MFE calculations is

warranted because such a large and tedious coding effort of analytic

Jacobian expressions would be required in the event that numerical Jacobian

evaluations were found to be inadequate.
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The foIlowino iof. onal persunnel participated in the research

k.oncucted during this reporting period:

Dr. M. Jahed Djomehri (student of Pruf. Keith Miller, U.C. Berkeley)
Dr. Said K. Doss
Dr. Robert J. Gelinas
Dr. J. Peter Vajk

No significant changes are anticipated in the commitments of key

personnel during the next reporting period.

Papers were presented at:

IMACS International Symiposiumn, Lehigh University; 6/30-7/2/81; "The
Moving Finite Element Method: A Semi-Automatic Solver for Diverse PDE
Applications," by R. J. Gelinas and S. K. Doss.

LASL Adaptive Mesh Workshop, Los Alanos, NM; August 5-7, 1981; "The
Moving Finite Element Method: Implementation ofa 2-D Code," by J. P.
Vajk, S, K. Doss, R. J. Gelinas, and K. Miller.

SIAM Meeting, October 26-28, 1981, Cincinnati, OH; "Solution of the Gas
Dynamics Equations in I-D by the Moving Finite Element Method," by S. K.
Doss.
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